skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sumon, Md_Saiful_Islam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We demonstrate efficient on-chip green light generation via frequency upconversion in silicon nitride–thin-film lithium niobate (SiN-TFLN) hybrid waveguides, obtained by transfer printing LN coupons on selected areas of photonic integrated circuits (PICs). By utilizing modal phase matching (MPM), our devices achieve a high normalized conversion efficiency of 42.5% W−1cm−2in a single-pass, 2.4-mm-long waveguide configuration. The SiN–LN transition in the waveguide inherently facilitates mode conversion, transforming a higher-order second-harmonic mode into a fundamental TE mode, ensuring coherent, narrow-linewidth, green light emission. Our waveguide platform gives rise to a wavelength shift of ∼1 nm for every 10 nm of waveguide width variation and temperature-induced wavelength tuning of ∼0.02 nm/°C. 
    more » « less
  2. Abstract The effect of proton implantation as isolation implant and subsequent annealing on the optical absorption and electrical resistivity of low-bandgapp-GaSb is reported. The measured transmittance spectra indicates that implantation creates a distribution of energy levels extending into the bandgap. Electrical measurements show that the average sheet resistance of the implanted layer increases only by an order of magnitude from its pre-implantation value at a proton dose of ∼1013cm−2followed by 200 °C annealing. It is also shown that annealing reduces the implantation-induced optical absorption while still retaining a high electrical resistivity. 
    more » « less